Abstract
Hybridization is an important application in obtaining the multi-functionality to combine the best properties of each reinforcing element makes up the composite. In this study, hybrid composites and uniform composites were fabricated using carbon, aramid, and intraply carbon/aramid hybrid weaves with two different production methods (vacuum-assisted resin transfer molding process and vacuum bagging process). The mechanical properties of the produced hybrid composites and uniform composites were analyzed with respect to two different methods. Epoxy resin from thermoset resins was used as a matrix element. The composite samples produced were analyzed mechanically (tensile test, hardness test) and morphologically, as well as in the production of intraply hybrid carbon/aramid composites and interply hybrid Carbon and Kevlar composites, how different production methods affect the results. Results show in the productions made with VABM (vacuum bagging method), the tensile strength value of Intraply carbon/aramid hybrid samples was 1.56 times better than the ones made with VARTM (vacuum assisted resin transfer molding). In the comparison of hardness values, 1.20 times higher results were obtained in the value of Intraply carbon/aramid hybrid samples produced with VARTM compared to those made with VABM. Using SEM analysis, the interfacial properties such as fiber breakage, fiber shrinkage, and fracture were determined in the specimens after the uniaxial tensile test, and it was found that the interactions of the fiber interfaces support the mechanical properties of the specimens.
Publisher
Uludag University Journal of the Faculty of Engineering
Reference39 articles.
1. 1. Alsaadi, M., Erkliğ, A., and Abbas, M. (2020) Effect of Clay Nanoparticles on the Mechanical and Vibration Characteristics of Intraply Aramid/Carbon Fiber Reinforced Epoxy Composite, Polymer Composites, 41(7),2704–2712.
2. 2. Alsaadi, M. (2019) Hybridization Effects of S-glass fiber on Charpy impact resistance of carbon/aramid fiber reinforced epoxy composite laminates, Materials Research Express, 6(12),125342.
3. 3. ASTM D3039/D3039-M, (2000). Standard Test Method for Tensile Properties of Polymer Matrix Composite Material, ASTM, United States.
4. 4. ASTM E92-17, (2017). Standard Test Methods for Vickers Hardness and Knoop Hardness of Metallic Materials, ASTM, United States.
5. 5. Atlıhan, G., and Ergene, B. (2018) Vibration analysis of layered composite beam with variable section in terms of delamination and orientation angle in analytical and numerical methods, Acta Physica Polonica A, 134(1),13–17.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献