Affiliation:
1. BALIKESİR ÜNİVERSİTESİ, BİGADİÇ MESLEK YÜKSEKOKULU, YÖNETİM VE ORGANİZASYON BÖLÜMÜ, LOJİSTİK PR.
2. BALIKESİR ÜNİVERSİTESİ, İKTİSADİ VE İDARİ BİLİMLER FAKÜLTESİ, İŞLETME BÖLÜMÜ
Abstract
Overall equipment effectiveness (OEE) describes production efficiency by combining availability, performance, and quality and is used to evaluate production equipment’s performance. This research’s aim is to investigate the potential of the feature selection techniques and the multiple linear regression method, which is one of the machine learning techniques, in successfully predicting the OEE of the corrugated department of a box factory. In the study, six different planned downtimes and information on seventeen different previously known concepts related to activities to be performed are used as input features. Moreover, backward elimination, forward selection, stepwise selection, correlation-based feature selection (CFS), genetic algorithm, random forest, extra trees, ridge regression, lasso regression, and elastic net feature selection methods are proposed to find the most distinctive feature subset in the dataset. As a result of the analyses performed on the data set consisting of 23 features, 1 output and 1204 working days of information, the elastic net - multiple linear regression model, which selects 19 attributes, gave the best average R2 value compared to other models developed. Occam's razor principle is taken into account since there is not a great difference between the average R2 values obtained. Among the models developed according to the principle, the stepwise selection - multiple linear regression model yielded the best R2 value among those that selected the fewest features.
Publisher
Uludag University Journal of the Faculty of Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献