Abstract
Due to the developing electric vehicle industry in the last decade, weight reduction studies on vehicle bodies have gained great importance. Foam core sandwich structures stand out as the most ideal materials in terms of providing both weight reduction and strength conditions in the bodies of electric individual and public transportation vehicles. In this study, EPP foams with two different densities were placed between aluminum plates and sandwich structures were obtained by combining the two structures with an EVA-based adhesive. Compression and bending behaviors of the produced sandwich structures were investigated under quasi-static and dynamic loading conditions. With the tests carried out, the strength of the sandwich structures and the amount of energy they absorb were calculated and compared experimentally. According to the results obtained, it was observed that the denser D2 foam exhibited approximately 1.4 to 2.05 times more strength than the lower density D1 foam in all tests. In terms of the energy they absorb, the D2 foam absorbs 1.25 to 2.5 times more energy than the other foam. Contrary to this situation, only the dynamic compression test occurred in the tests performed. When the post-damage behavior of the sandwich structures was examined, it was also observed that the D2 foam returned to a very similar dimensions to its original size, giving more of the deformation after the damage at the end of 72 hours.
Publisher
Uludag University Journal of the Faculty of Engineering