Affiliation:
1. Bursa Uludağ Üniversitesi
2. İstanbul Teknik Üniversitesi
Abstract
This paper numerically investigates the impact of considering the seismic wave propagation phenomenon on the dynamic response of high-rise buildings. A core wall and a frame are analyzed under seismic loading considering wave propagation phenomenon and ignoring it. The bending moment, shear force, axial force, and inter-story drift for both analyzed systems are evaluated. The amplitude Fourier response spectra for the dynamic response at different stories are discussed as well. Forty-six stories each, both systems are subjected to transverse and longitudinal seismic waves at the fixed base. The results show that considering the wave propagation phenomenon yields a slight decrease in the inter-story drift, shear force, and bending moment. It is found that considering wave propagation phenomenon increases the axial force significantly, especially for the core wall at the floors of the top third part. It is worth pointing out that high-rise buildings cannot be categorized, and every single different detail can trigger a different response. Thus, the main contribution of this paper is to highlight the drastic need to consider wave propagation phenomenon in such "out of code" buildings. The more important is a need to upgrade the standard analysis and design engineering packages to accurately capture the essential physics of the wave propagation phenomenon and perform the analysis precisely.
Publisher
Uludag University Journal of the Faculty of Engineering