MICROSTRIP PATCH ANTENNA DESIGN WITH ENHANCED RADIATION EFFICIENCY FOR 5G 60 GHZ MILLIMETER-WAVE SYSTEMS

Author:

Irıqat Sanaa1ORCID,Yenikaya Sibel1ORCID

Affiliation:

1. BURSA ULUDAG UNIVERSITY

Abstract

In this paper, a wideband, high-gain microstrip patch antenna design for 60 GHz applications is presented. The chosen substrate material is Rogers RT 5880, with a thickness of 1.6 mm, a relative permittivity of 2.2, and a loss tangent of 0.0009. Initially, a simple rectangular patch antenna is designed. To address the challenges of low gain and low radiation efficiency, two rectangular parasitic elements are introduced. These parasitic elements interact with the main radiator, resulting in improved gain and radiation efficiency. In the final step, an extended ground plane structure is adopted to further enhance return loss, radiation efficiency, and gain. The proposed antenna achieves a high gain of 13.10 dBi and a maximum radiation efficiency of 90% with a compact size of 13.6 × 10.6 mm2. For bandwidth calculations, given that the 60 GHz frequency band is known for its challenging propagation environment, the -15 dB criteria is chosen instead of the commonly used -10 dB criterion. According to this -15 dB criterion, the antenna exhibits wideband behavior spanning from 55 to 65 GHz, offering an impressive impedance bandwidth of 10 GHz. This design demonstrates significant potential for 60 GHz applications.

Publisher

Uludag University Journal of the Faculty of Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3