Long-term fishing impact on the Senegalese coastal demersal resources: diagnosing from stock assessment models

Author:

Ba KamarelORCID,Thiaw Modou,Fall Massal,Thiam Ndiaga,Meissa Beyah,Jouffre Didier,Thiaw Omar Thiom,Gascuel Didier

Abstract

For the first time in Senegal, assessments based on both stochastic and deterministic production models were used to draw a global diagnosis of the fishing impact on coastal demersal stocks. Based one national fisheries databases and scientific trawl surveys data: (i) trends in landings since 1971 were examined, (ii) abundance indices of 10 stocks were estimated using linear models fitted to surveys data and commercial catch per unit efforts, and (iii) stock assessments were carried out using pseudo-equilibrium Fox and Pella-Tomlinson models and a Biomass dynamic production model fitted in a Bayesian framework to abundance indices. Most stocks have seen their abundance sharply declining over time. All stocks combined, results of stock assessments suggest a 63% reduction compared to virgin state. Three fifth of demersal stocks are overexploited and excess in fishing effort was estimated until 75% for the worst case. We conclude by suggesting that the fishing of such species must be regulated and an ecosystem approach to fisheries management should be implemented in order to monitor the whole ecosystem.

Publisher

EDP Sciences

Subject

Aquatic Science

Reference60 articles.

1. Resilience of Key Biological Parameters of the Senegalese Flat Sardinella to Overfishing and Climate Change

2. Barry M, Laurans M, Thiao D, Gascuel D.  2002. Diagnostic de l'état d'exploitation de cinq espèces démersales côtières sénégalaises, in: Chavance et al. (Eds.), Pêcheries Maritimes, Écosystèmes et Sociétés En Afrique de l'Ouest: Un demi-siècle de changement. Edition Office des Communautés Européennes, Coll Rap de recherche halieutique ACP-UE n° 15, Luxembourg, pp. 183–194.

3. Fisheries catch misreporting and its implications: The case of Senegal

4. Bolker BM. 2008. Ecological models and data in R, Princeton University Press, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3