Semi-discretization and full-discretization with improved accuracy for charged-particle dynamics in a strong nonuniform magnetic field

Author:

Wang Bin,Jiang Yaolin

Abstract

The aim of this paper is to formulate and analyze numerical discretizations of charged-particle dynamics (CPD) in a strong nonuniform magnetic field. A strategy is firstly performed for the two dimensional CPD to construct the semi-discretization and full-discretization which have improved accuracy. This accuracy is improved in the position and in the velocity when the strength of the magnetic field becomes stronger. This is a better feature than the usual so called ``uniformly accurate methods”. To obtain this refined accuracy, some reformulations of the problem and two-scale exponential integrators are incorporated, and the improved accuracy is derived from this new procedure. Then based on the strategy given for the two dimensional case, a new class of uniformly accurate methods with simple scheme is formulated for the three dimensional CPD in maximal ordering case. All the theoretical results of the accuracy are numerically illustrated by some numerical tests.

Funder

National Natural Science Foundation of China

Publisher

EDP Sciences

Reference49 articles.

1. Arnold V.I., Kozlov V.V. and Neishtadt A.I., Mathematical Aspects of Classical and Celestial Mechanics. Springer, Berlin (1997).

2. Computing Ground States of Bose--Einstein Condensates with Higher Order Interaction via a Regularized Density Function Formulation

3. Adiabatic invariants and trapping of a point charge in a strong nonuniform magnetic field

4. Birdsall C.K. and Langdon A.B., Plasma Physics Via Computer Simulation. Series in Plasma Physics. Taylor & Francis, New York (2005).

5. Boris J.P., Relativistic plasma simulation-optimization of a hybrid code, in Proceeding of Fourth Conference on Numerical Simulations of Plasmas (1970) 3–67.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3