Author:
Caucao Sergio,Discacciati Marco,Gatica Gabriel N.,Oyarzúa Ricardo
Abstract
In this work we present and analyse a mixed finite element method for the coupling of fluid flow with porous media flow. The flows are governed by the Navier–Stokes and the Darcy–Forchheimer equations, respectively, and the corresponding transmission conditions are given by mass conservation, balance of normal forces, and the Beavers–Joseph–Saffman law. We consider the standard mixed formulation in the Navier–Stokes domain and the dual-mixed one in the Darcy–Forchheimer region, which yields the introduction of the trace of the porous medium pressure as a suitable Lagrange multiplier. The well-posedness of the problem is achieved by combining a fixed-point strategy, classical results on nonlinear monotone operators and the well-known Schauder and Banach fixed-point theorems. As for the associated Galerkin scheme we employ Bernardi–Raugel and Raviart–Thomas elements for the velocities, and piecewise constant elements for the pressures and the Lagrange multiplier, whereas its existence and uniqueness of solution is established similarly to its continuous counterpart, using in this case the Brouwer and Banach fixed-point theorems, respectively. We show stability, convergence, and a priori error estimates for the associated Galerkin scheme. Finally, we report some numerical examples confirming the predicted rates of convergence, and illustrating the performance of the method.
Funder
Fondo Nacional de Desarrollo Científico y Tecnológico
CONICYT-Chile through the PIA Program: Concurso Apoyo a Centros Cientificos y Tecnológicos de Excelencia con Financiamiento Basal
CONICYT-Chile through the PAI Program: Convocatoria Nacional Subvención a la Instalación en la Academia
Universidad del Bío-Bío
Becas-Chile Programme for Chilean students
Subject
Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献