Coupled mixed finite element and finite volume methods for a solid velocity-based model of multidimensional sedimentation

Author:

Careaga JulioORCID,Gatica Gabriel N.

Abstract

In this paper we introduce and analyze a model of sedimentation based on a solid velocity formulation. A particular feature of the governing equations is given by the fact that the velocity field is non-divergence free. We introduce extra variables such as the pseudostress tensor relating the velocity gradient with the pressure, thus leading to a mixed variational formulation consisting of two systems of equations coupled through their source terms. A result of existence and uniqueness of solutions is shown by means of a fixed-point strategy and the help of the Babuška–Brezzi theory and Banach theorem. Additionally, we employ suitable finite dimensional subspaces to approximate both systems of equations via associated mixed finite element methods. The well-posedness of the resulting coupled scheme is also treated via a fixed-point approach, and hence the discrete version of the existence and uniqueness result is derived analogously to the continuous case. The above is then combined with a finite volume method for the transport equation. Finally, several numerical results illustrating the performance of the proposed model and the full numerical scheme, and confirming the theoretical rates of convergence, are presented.

Funder

Agencia Nacional de Investigación y Desarrollo

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3