Fully-discrete finite element numerical scheme with decoupling structure and energy stability for the Cahn–Hilliard phase-field model of two-phase incompressible flow system with variable density and viscosity

Author:

Chen Chuanjun,Yang Xiaofeng

Abstract

We construct a fully-discrete finite element numerical scheme for the Cahn–Hilliard phase-field model of the two-phase incompressible flow system with variable density and viscosity. The scheme is linear, decoupled, and unconditionally energy stable. Its key idea is to combine the penalty method of the Navier–Stokes equations with the Strang operator splitting method, and introduce several nonlocal variables and their ordinary differential equations to process coupled nonlinear terms. The scheme is highly efficient and it only needs to solve a series of completely independent linear elliptic equations at each time step, in which the Cahn–Hilliard equation and the pressure Poisson equation only have constant coefficients. We rigorously prove the unconditional energy stability and solvability of the scheme and carry out numerous accuracy/stability examples and various benchmark numerical simulations in 2D and 3D, including the Rayleigh–Taylor instability and rising/coalescence dynamics of bubbles to demonstrate the effectiveness of the scheme, numerically.

Funder

National Science Foundation

Publisher

EDP Sciences

Subject

Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3