Author:
Chen Chuanjun,Yang Xiaofeng
Abstract
We construct a fully-discrete finite element numerical scheme for the Cahn–Hilliard phase-field model of the two-phase incompressible flow system with variable density and viscosity. The scheme is linear, decoupled, and unconditionally energy stable. Its key idea is to combine the penalty method of the Navier–Stokes equations with the Strang operator splitting method, and introduce several nonlocal variables and their ordinary differential equations to process coupled nonlinear terms. The scheme is highly efficient and it only needs to solve a series of completely independent linear elliptic equations at each time step, in which the Cahn–Hilliard equation and the pressure Poisson equation only have constant coefficients. We rigorously prove the unconditional energy stability and solvability of the scheme and carry out numerous accuracy/stability examples and various benchmark numerical simulations in 2D and 3D, including the Rayleigh–Taylor instability and rising/coalescence dynamics of bubbles to demonstrate the effectiveness of the scheme, numerically.
Funder
National Science Foundation
Subject
Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献