Homogenization of sound-soft and high-contrast acoustic metamaterials in subcritical regimes

Author:

Feppon FlorianORCID,Ammari Habib

Abstract

We propose a quantitative effective medium theory for two types of acoustic metamaterials constituted of a large number N of small heterogeneities of characteristic size s, randomly and independently distributed in a bounded domain. We first consider a “sound-soft” material, in which the total wave field satisfies a Dirichlet boundary condition on the acoustic obstacles. In the “sub-critical” regime sN = O(1), we obtain that the effective medium is governed by a dissipative Lippmann–Schwinger equation which approximates the total field with a relative mean-square error of order O(max((sN)2N-1/3, N-1/2)). We retrieve the critical size s ~ 1/N of the literature at which the effects of the obstacles can be modelled by a “strange term” added to the Helmholtz equation. Second, we consider high-contrast acoustic metamaterials, in which each of the N heterogeneities are packets of K inclusions filled with a material of density much lower than the one of the background medium. As the contrast parameter vanishes, δ → 0, the effective medium admits K resonant characteristic sizes (si(δ))1≤iK and is governed by a Lippmann–Schwinger equation, which is diffusive or dispersive (with negative refractive index) for frequencies ω respectively slightly larger or slightly smaller than the corresponding K resonant frequencies (ωi (δ))1≤iK. These conclusions are obtained under the condition that (i) the resonance is of monopole type, and (ii) lies in the “subcritical regime” where the contrast parameter is small enough, i.e. δ = o(N−2)), while the considered frequency is “not too close” to the resonance, i.e. Nδ1/2 = O(|1 - s/si(δ)|). Our mathematical analysis and the current literature allow us to conjecture that “solidification” phenomena are expected to occur in the “super-critical” regime Nδ1/2|1 - s/si(δ)|-1 → + ∞.

Publisher

EDP Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiscale Topology Optimization of modulated fluid microchannels based on asymptotic homogenization;Computer Methods in Applied Mechanics and Engineering;2024-02

2. On the origin of Minnaert resonances;Journal de Mathématiques Pures et Appliquées;2022-09

3. Shape analyticity and singular perturbations for layer potential operators;ESAIM: Mathematical Modelling and Numerical Analysis;2022-08-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3