Abstract
We propose a quantitative effective medium theory for two types of acoustic metamaterials constituted of a large number N of small heterogeneities of characteristic size s, randomly and independently distributed in a bounded domain. We first consider a “sound-soft” material, in which the total wave field satisfies a Dirichlet boundary condition on the acoustic obstacles. In the “sub-critical” regime sN = O(1), we obtain that the effective medium is governed by a dissipative Lippmann–Schwinger equation which approximates the total field with a relative mean-square error of order O(max((sN)2N-1/3, N-1/2)). We retrieve the critical size s ~ 1/N of the literature at which the effects of the obstacles can be modelled by a “strange term” added to the Helmholtz equation. Second, we consider high-contrast acoustic metamaterials, in which each of the N heterogeneities are packets of K inclusions filled with a material of density much lower than the one of the background medium. As the contrast parameter vanishes, δ → 0, the effective medium admits K resonant characteristic sizes (si(δ))1≤i≤K and is governed by a Lippmann–Schwinger equation, which is diffusive or dispersive (with negative refractive index) for frequencies ω respectively slightly larger or slightly smaller than the corresponding K resonant frequencies (ωi (δ))1≤i≤K. These conclusions are obtained under the condition that (i) the resonance is of monopole type, and (ii) lies in the “subcritical regime” where the contrast parameter is small enough, i.e. δ = o(N−2)), while the considered frequency is “not too close” to the resonance, i.e. Nδ1/2 = O(|1 - s/si(δ)|). Our mathematical analysis and the current literature allow us to conjecture that “solidification” phenomena are expected to occur in the “super-critical” regime Nδ1/2|1 - s/si(δ)|-1 → + ∞.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Scattering from time-modulated subwavelength resonators;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-05
2. Multiscale Topology Optimization of modulated fluid microchannels based on asymptotic homogenization;Computer Methods in Applied Mechanics and Engineering;2024-02
3. On the origin of Minnaert resonances;Journal de Mathématiques Pures et Appliquées;2022-09
4. Shape analyticity and singular perturbations for layer potential operators;ESAIM: Mathematical Modelling and Numerical Analysis;2022-08-12