Numerical solutions to Hyperbolic Maxwell quasi-variational inequalities in Bean–Kim model for type-II superconductivity

Author:

Hensel Maurice,Winckler Malte,Yousept IrwinORCID

Abstract

This paper is devoted to the finite element analysis for the Bean–Kim model governed by the full 3D Maxwell equations. Describing type-II superconductivity at the macroscopic level, this model leads to a challenging coupled system consisting of the Faraday equation and a hyperbolic quasi-variational inequality (QVI) of the second kind with L1-type nonlinearity, that arises explicitly from the magnetic field dependency in the critical current. With the involved Maxwell coupling in the 3D H(curl)-setting, the hyperbolic QVI character poses the primary challenge in the numerical investigation. Two mixed finite element methods based on implicit Euler and leapfrog time-stepping are proposed. On the one hand, the implicit Euler method results in a nonstandard system of curl-curl elliptic QVI with a first-order curl-type nonlinearity. Though the well-posedness of this system is guaranteed, its numerical realization is not straightforward and requires the use of a two-stage iteration process of high computational complexity. On the other hand, by approximating the electric and magnetic fields at two different time step levels, the leapfrog method turns out to be more suitable as it naturally eliminates the notorious QVI structure. More importantly, utilizing suited subdifferential and optimization techniques, we are able to prove an efficiently computable explicit formula for its exact solution in terms of the electric field, which makes its numerical computation substantially more favorable than the Euler method. As further advantages, the leapfrog method applies to broad scenarios involving low regular data of bounded variation (BV) in time for both the applied current source and the temperature distribution. Through nonstandard technical arguments tailored to the BV data, our analysis proves the conditional stability and, eventually, the uniform convergence of the proposed leapfrog method. This paper is closed by 3D numerical tests showcasing the reasonable and efficient performance of the proposed numerical solution.

Funder

Deutsche Forschungsgemeinschaft

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3