Fully discrete Schwarz waveform relaxation analysis for the heat equation on a finite spatial domain

Author:

Haynes Ronald D.ORCID,Mohammad Khaled

Abstract

Schwarz waveform relaxation methods provide space-time parallelism for the solution of time dependent partial differential equations. The algorithms are differentiated by the choice of the transmission conditions enforced at the introduced space-time boundaries. Early results considered the theoretical analysis of these algorithms in the continuous and semi-discrete (in space) settings for various families of linear partial differential equations. Later, fully discrete results were obtained under the simplifying assumption of an infinite spatial domain. In this paper, we provide a first analysis of a fully discrete classical Schwarz Waveform algorithm for the one-dimensional heat equation on an arbitrary but finite number of bounded subdomains. The θ-method is chosen as the time integrator. Convergence results are given in both the infinity norm and two norm, with an explicit contraction given in the case of a uniform partitioning. The results are compared to the numerics and to the earlier theoretical results.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

EDP Sciences

Reference27 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3