Strong bounded variation estimates for the multi-dimensional finite volume approximation of scalar conservation laws and application to a tumour growth model

Author:

Chirappurathu Remesan GopikrishnanORCID

Abstract

A uniform bounded variation estimate for finite volume approximations of the nonlinear scalar conservation law tα + div(uf(α)) = 0 in two and three spatial dimensions with an initial data of bounded variation is established. We assume that the divergence of the velocity div(u) is of bounded variation instead of the classical assumption that div(u) is zero. The finite volume schemes analysed in this article are set on nonuniform Cartesian grids. A uniform bounded variation estimate for finite volume solutions of the conservation law tα + div(F(t,x,α)) = 0, where divxF ≠ 0 on nonuniform Cartesian grids is also proved. Such an estimate provides compactness for finite volume approximations in Lp spaces, which is essential to prove the existence of a solution for a partial differential equation with nonlinear terms in α, when the uniqueness of the solution is not available. This application is demonstrated by establishing the existence of a weak solution for a model that describes the evolution of initial stages of breast cancer proposed by Franks et al. [J. Math. Biol. 47 (2003) 424–452]. The model consists of four coupled variables: tumour cell concentration, tumour cell velocity–pressure, and nutrient concentration, which are governed by a hyperbolic conservation law, viscous Stokes system, and Poisson equation, respectively. Results from numerical tests are provided and they complement theoretical findings.

Publisher

EDP Sciences

Subject

Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3