Generalized finite difference schemes with higher order Whitney forms

Author:

Kettunen LauriORCID,Lohi Jonni,Räbinä Jukka,Mönkölä Sanna,Rossi Tuomo

Abstract

Finite difference kind of schemes are popular in approximating wave propagation problems in finite dimensional spaces. While Yee’s original paper on the finite difference method is already from the sixties, mathematically there still remains questions which are not yet satisfactorily covered. In this paper, we address two issues of this kind. Firstly, in the literature Yee’s scheme is constructed separately for each particular type of wave problem. Here, we explicitly generalize the Yee scheme to a class of wave problems that covers at large physics field theories. For this we introduce Yee’s scheme for all problems of a class characterised on a Minkowski manifold by (i) a pair of first order partial differential equations and by (ii) a constitutive relation that couple the differential equations with a Hodge relation. In addition, we introduce a strategy to systematically exploit higher order Whitney elements in Yee-like approaches. This makes higher order interpolation possible both in time and space. For this, we show that Yee-like schemes preserve the local character of the Hodge relation, which is to say, the constitutive laws become imposed on a finite set of points instead of on all ordinary points of space. As a result, the usage of higher order Whitney forms does not compel to change the actual solution process at all. This is demonstrated with a simple example.

Publisher

EDP Sciences

Subject

Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Reference42 articles.

1. Abraham R. and Marsden J.E., Foundations of Mechanics, 2nd edition. Addison-Wesley (1987).

2. Baez J. and Muniain J.P., Gauge Fields, Knots and Gravity. Series on Knots and Everything. World Scientific (1994).

3. Bleecker D., Gauge Theories and Variational Principles. Addison-Wesley (1981).

4. How weak is the "weak solution" in finite element methods?

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3