Abstract
In this work, we present and prove results underlying a method which uses functionals derived from the interaction integral to approximate the stress intensity factors along a three-dimensional crack front. We first prove that the functionals possess a pair of important properties. The functionals are well-defined and continuous for square-integrable tensor fields, such as the gradient of a finite element solution. Furthermore, the stress intensity factors are representatives of such functionals in a space of functions over the crack front. Our second result is an error estimate for the numerical stress intensity factors computed via our method. The latter property of the functionals provides a recipe for numerical stress intensity factors; we apply the functionals to the gradient of a finite element approximation for a specific set of crack front variations, and we calculate the stress intensity factors by inverting the mass matrix for those variations.
Funder
Division of Civil, Mechanical and Manufacturing Innovation