Abstract
This work proposes a family of multiscale hybrid-mixed methods for the two-dimensional linear elasticity problem on general polygonal meshes. The new methods approximate displacement, stress, and rotation using two-scale discretizations. The first scale level setting consists of approximating the traction variable (Lagrange multiplier) in discontinuous polynomial spaces, and of computing elementwise rigid body modes. In the second level, the methods are made effective by solving completely independent local boundary Neumann elasticity problems written in a mixed form with weak symmetry enforced via the rotation multiplier. Since the finite-dimensional space for the traction variable constraints the local stress approximations, the discrete stress field lies in the H(div) space globally and stays in local equilibrium with external forces. We propose different choices to approximate local problems based on pairs of finite element spaces defined on affine second-level meshes. Those choices generate the family of multiscale finite element methods for which stability and convergence are proved in a unified framework. Notably, we prove that the methods are optimal and high-order convergent in the natural norms. Also, it emerges that the approximate displacement and stress divergence are super-convergent in the L2-norm. Numerical verifications assess theoretical results and highlight the high precision of the new methods on coarse meshes for multilayered heterogeneous material problems.
Funder
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Agência Nacional do Petróleo, Gás Natural e Biocombustíveis
Ministério de Ciência Tecnologia e Inovação
European Union's Horizon 2020
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Bull Ltda
Conventions Industrielles de Formation par la Recherche, Ambassade de France/Brésil
Subject
Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献