Asymptotic analysis and topological derivative for 3D quasi-linear magnetostatics

Author:

Gangl PeterORCID,Sturm Kevin

Abstract

In this paper we study the asymptotic behaviour of the quasilinear curl-curl equation of 3D magnetostatics with respect to a singular perturbation of the differential operator and prove the existence of the topological derivative using a Lagrangian approach. We follow the strategy proposed in Gangl and Sturm (ESAIM: COCV 26 (2020) 106) where a systematic and concise way for the derivation of topological derivatives for quasi-linear elliptic problems in H1 is introduced. In order to prove the asymptotics for the state equation we make use of an appropriate Helmholtz decomposition. The evaluation of the topological derivative at any spatial point requires the solution of a nonlinear transmission problem. We discuss an efficient way for the numerical evaluation of the topological derivative in the whole design domain using precomputation in an offline stage. This allows us to use the topological derivative for the design optimization of an electrical machine.

Funder

Technische Universität Graz

Technische Universitat Wien

Publisher

EDP Sciences

Subject

Applied Mathematics,Modelling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complete topological asymptotic expansion for L2 and H1 tracking-type cost functionals in dimension two and three;Journal of Differential Equations;2024-12

2. Topology optimization for magnetic circuits with continuous adjoint method in 3D;COMPEL - The international journal for computation and mathematics in electrical and electronic engineering;2024-05-24

3. Efficient and Accurate Separable Models for Discretized Material Optimization: A Continuous Perspective Based on Topological Derivatives;The Journal of Geometric Analysis;2024-04-29

4. Quasi-Newton methods for topology optimization using a level-set method;Structural and Multidisciplinary Optimization;2023-09

5. One-Sided Derivative of Parametrized Minima for Shape and Topological Derivatives;SIAM Journal on Control and Optimization;2023-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3