On strictly convex entropy functions for the reactive Euler equations

Author:

Zhao WeifengORCID

Abstract

This work is concerned with entropy functions of the reactive Euler equations describing inviscid compressible flow with chemical reactions. In our recent work (W. Zhao, Math. Comput. 91 (2022) 735–760.) we point out that for these equations as a hyperbolic system, the classical entropy function associated with the thermodynamic entropy is no longer strictly convex under the equation of state (EoS) for the ideal gas. In this work, we propose two strategies to address this issue. The first one is to correct the entropy function. Namely, we present a class of strictly convex entropy functions by adding an extra term to the classical one. Such strictly entropy functions contain that constructed in (W. Zhao, Math. Comput. 91 (2022) 735–760.) as a special case. The second strategy is to modify the EoS. We show that there exists a family of EoS (for the nonideal gas) such that the classical entropy function is strictly convex. Under these new EoS, the reactive Euler equations are proved to satisfy the Conservation-Dissipation Conditions for general hyperbolic relaxation systems, which guarantee the existence of zero relaxation limit. Additionally, an elegant eigen-system of the Jacobian matrix is derived for the reactive Euler equations under the proposed EoS. Numerical experiments demonstrate that the proposed EoS can also generate ZND detonations. Extension of the present results to high dimensions is direct.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3