Author:
Xu Fei,Chen Liu,Huang Qiumei
Abstract
In this paper, we propose a local defect-correction method for solving the Steklov eigenvalue problem arising from the scalar second order positive definite partial differential equations based on the multilevel discretization. The objective is to avoid solving large-scale equations especially the large-scale Steklov eigenvalue problem whose computational cost increases exponentially. The proposed algorithm transforms the Steklov eigenvalue problem into a series of linear boundary value problems, which are defined in a multigrid space sequence, and a series of small-scale Steklov eigenvalue problems in a coarse correction space. Furthermore, we use the local defect-correction technique to divide the large-scale boundary value problems into small-scale subproblems. Through our proposed algorithm, we avoid solving large-scale Steklov eigenvalue problems. As a result, our proposed algorithm demonstrates significantly improved the solving efficiency. Additionally, we conduct numerical experiments and a rigorous theoretical analysis to verify the effectiveness of our proposed approach.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献