A nonnegativity preserving scheme for the relaxed Cahn–Hilliard equation with single-well potential and degenerate mobility

Author:

Bubba Federica,Poulain AlexandreORCID

Abstract

We propose and analyze a finite element approximation of the relaxed Cahn–Hilliard equation [Perthame and Poulain, Eur. J. Appl. Math. 32 (2021) 89–112.] with singular single-well potential of Lennard-Jones type and degenerate mobility that is energy stable and nonnegativity preserving. The Cahn–Hilliard model has recently been applied to model evolution and growth for living tissues. Although the choices of degenerate mobility and singular potential are biologically relevant, they induce difficulties regarding the design of a numerical scheme. We propose a finite element scheme, and we show that it preserves the physical bounds of the solutions thanks to an upwind approach adapted to the finite element method. We propose two different time discretizations leading to a non-linear and a linear scheme. Moreover, we show the well-posedness and convergence of solutions of the non-linear numerical scheme. Finally, we validate our scheme by presenting numerical simulations in one and two dimensions.

Funder

european research council

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3