Author:
Faccanoni Gloria,Grec Bérénice,Penel Yohan
Abstract
In the present paper, we investigate a new homogeneous relaxation model describing the behaviour of a two-phase fluid flow in a low Mach number regime, which can be obtained as a low Mach number approximation of the well-known HRM. For this specific model, we derive an equation of state to describe the thermodynamics of the two-phase fluid. We prove some theoretical properties satisfied by the solutions of the model, and provide a well-balanced scheme. To go further, we investigate the instantaneous relaxation regime, and prove the formal convergence of this model towards the low Mach number approximation of the well-known HEM. An asymptotic-preserving scheme is introduced to allow numerical simulations of the coupling between spatial regions with different relaxation characteristic times.
Subject
Applied Mathematics,Modelling and Simulation,Numerical Analysis,Analysis,Computational Mathematics