Numerical approximation of probabilistically weak and strong solutions of the stochastic total variation flow

Author:

Baňas L’ubomír,Ondreját Martin

Abstract

We propose a fully practical numerical scheme for the simulation of the stochastic total variation flow (STVF). The approximation is based on a stable time-implicit finite element space-time approximation of a regularized STVF equation. The approximation also involves a finite dimensional discretization of the noise that makes the scheme fully implementable on physical hardware. We show that the proposed numerical scheme converges in law to a solution that is defined in the sense of stochastic variational inequalities (SVIs). Under strengthened assumptions the convergence can be show to holds even in probability. As a by product of our convergence analysis we provide a generalization of the concept of probabilistically weak solutions of stochastic partial differential equation (SPDEs) to the setting of SVIs. We also prove convergence of the numerical scheme to a probabilistically strong solution in probability if pathwise uniqueness holds. We perform numerical simulations to illustrate the behavior of the proposed numerical scheme as well as its non-conforming variant in the context of image denoising.

Funder

DFG, German Research Foundation

Grantová Agentura České Republiky

Publisher

EDP Sciences

Reference21 articles.

1. Ambrosio L., Fusco N. and Pallara D., Functions of Bounded Variation and Free Discontinuity Problems.Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000).

2. Stochastic Variational Inequalities and Applications to the Total Variation Flow Perturbed by Linear Multiplicative Noise

3. Nonconforming discretizations of convex minimization problems and precise relations to mixed methods

4. A Posteriori Estimates for the Stochastic Total Variation Flow

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3