Hyperbolic models for the spread of epidemics on networks: kinetic description and numerical methods

Author:

Bertaglia GiuliaORCID,Pareschi LorenzoORCID

Abstract

We consider the development of hyperbolic transport models for the propagation in space of an epidemic phenomenon described by a classical compartmental dynamics. The model is based on a kinetic description at discrete velocities of the spatial movement and interactions of a population of susceptible, infected and recovered individuals. Thanks to this, the unphysical feature of instantaneous diffusive effects, which is typical of parabolic models, is removed. In particular, we formally show how such reaction-diffusion models are recovered in an appropriate diffusive limit. The kinetic transport model is therefore considered within a spatial network, characterizing different places such as villages, cities, countries, etc. The transmission conditions in the nodes are analyzed and defined. Finally, the model is solved numerically on the network through a finite-volume IMEX method able to maintain the consistency with the diffusive limit without restrictions due to the scaling parameters. Several numerical tests for simple epidemic network structures are reported and confirm the ability of the model to correctly describe the spread of an epidemic.

Funder

Ministero dell’Istruzione, dell’Università e della Ricerca

Publisher

EDP Sciences

Subject

Applied Mathematics,Modelling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Reference43 articles.

1. Aktay A., Bavadekar S., Cossoul G., Davis J., Desfontaines D., Fabrikant A., Gabrilovich E., Gadepalli K., Gipson B., Guevara M., Kamath C., Kansal M., Lange A., Mandayam C., Oplinger A., Pluntke C., Roessler T., Schlosberg A., Shekel T., Vispute S., Vu M., Wellenius G., Williams B. and Wilson R.J., Google COVID-19 Community Mobility Reports: Anonymization Process Description (version 1.1). Preprint: arXiv:2004.04145 (2020).

2. Albi G., Zanella M. and Pareschi L., Control with uncertain data of socially structured compartmental epidemic models. Preprint: arXiv:2004.13067 (2020).

3. Global weak solutions for systems of balance laws

4. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations

5. Multiscale mobility networks and the spatial spreading of infectious diseases

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3