An adaptive edge element method and its convergence for an electromagnetic constrained optimal control problem

Author:

Li Bowen,Zou Jun

Abstract

In this work, an adaptive edge element method is developed for an H(curl)-elliptic constrained optimal control problem. We use the lowest-order Nédélec’s edge elements of first family and the piecewise (element-wise) constant functions to approximate the state and the control, respectively, and propose a new adaptive algorithm with error estimators involving both residual-type error estimators and lower-order data oscillations. By using a local regular decomposition for H(curl)-functions and the standard bubble function techniques, we derive the a posteriori error estimates for the proposed error estimators. Then we exploit the convergence properties of the orthogonal L2-projections and the mesh-size functions to demonstrate that the sequences of the discrete states and controls generated by the adaptive algorithm converge strongly to the exact solutions of the state and control in the energy-norm and L2-norm, respectively, by first achieving the strong convergence towards the solution to a limiting control problem. Three-dimensional numerical experiments are also presented to confirm our theoretical results and the quasi-optimality of the adaptive edge element method.

Funder

Hong Kong Research Grants Council

Publisher

EDP Sciences

Subject

Applied Mathematics,Modeling and Simulation,Numerical Analysis,Analysis,Computational Mathematics

Reference68 articles.

1. Adams R.A. and Fournier J.J.F., Sobolev Spaces. Academic Press 140 (2003).

2. Ainsworth M. and Oden J.T., A Posteriori Error Estimation in Finite Element Analysis. John Wiley & Sons 37 (2011).

3. Elliptic Regularity Theory Applied to Time Harmonic Anisotropic Maxwell's Equations with Less than Lipschitz Complex Coefficients

4. Alberti G.S. and Capdeboscq Y., Lectures on Elliptic Methods for Hybrid Inverse Problems. Société Mathématique de France Paris 25 (2018).

5. Adaptive finite element methods for an optimal control problem involving Dirac measures

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3