Convergence analysis of pressure reconstruction methods from discrete velocities

Author:

Araya Rodolfo,Bertoglio Cristobal,Carcamo CristianORCID,Nolte David,Uribe Sergio

Abstract

Magnetic resonance imaging allows the measurement of the three-dimensional velocity field in blood flows. Therefore, several methods have been proposed to reconstruct the pressure field from such measurements using the incompressible Navier–Stokes equations, thereby avoiding the use of invasive technologies. However, those measurements are obtained at limited spatial resolution given by the voxel sizes in the image. In this paper, we propose a strategy for the convergence analysis of state-of-the-art pressure reconstruction methods. The methods analyzed are the so-called Pressure Poisson Estimator (PPE) and Stokes Estimator (STE). In both methods, the right-hand side corresponds to the terms that involving the field velocity in the Navier–Stokes equations, with a piecewise linear interpolation of the exact velocity. In the theoretical error analysis, we show that many terms of different order of convergence appear. These are certainly dominated by the lowest-order term, which in most cases stems from the interpolation of the velocity field. However, the numerical results in academic examples indicate that only the PPE may profit of increasing the polynomial order, and that the STE presents a higher accuracy than the PPE, but the interpolation order of the velocity field always prevails. Furthermore, we compare the pressure estimation methods on real MRI data, assessing the impact of different spatial resolutions and polynomial degrees on each method. Here, the results are consistent with the academic test cases in terms of sensitivity to polynomial order as well as the STE showing to be potentially more accurate when compared to reference pressure measurements.

Funder

H2020 European Research Council

FONDECYT

ANID-Chile scholarship PCHA/Doctorado Nacional

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3