Unisolvent and minimal physical degrees of freedom for the second family of polynomial differential forms

Author:

Bruno Ludovico BruniORCID,Zampa EnricoORCID

Abstract

The principal aim of this work is to provide a family of unisolvent and minimal physical degrees of freedom, called weights, for Nédélec second family of finite elements. Such elements are thought of as differential forms PrΛk(T) whose coefficients are polynomials of degree r. In this paper we confine ourselves in the two dimensional case ℝ2, as in this framework the Five Lemma offers a neat and elegant treatment avoiding computations on the middle space. The majority of definitions and constructions are meaningful for n > 2 as well and, when possible, they are thus given in such a generality, although more complicated techniques shall be invoked to replace the graceful role of the Five Lemma. In particular, we use techniques of homological algebra to obtain degrees of freedom for the whole diagram $$ {\mathcal{P}}_r{\mathrm{\Lambda }}^0(T)\to {\mathcal{P}}_{r-1}{\mathrm{\Lambda }}^1(T)\to {\mathcal{P}}_{r-2}{\mathrm{\Lambda }}^2(T), $$ being T a 2-simplex of ℝ2. This work pairs its companions recently appeared for Nédélec first family of finite elements.

Publisher

EDP Sciences

Reference37 articles.

1. Abraham R., Marsden J.E. and Ratiu T., Manifolds, Tensor Analysis, and Applications. Vol. 75, Springer Science & Business Media (2012).

2. Alonso Rodrguez A., Bruni Bruno L. and Rapetti F., Minimal sets of unisolvent weights for high order whitney forms on simplices, in Numerical Mathematics and Advanced Applications ENUMATH 2019. Springer (2021) 195–203.

3. Alonso Rodríguez A., Bruni Bruno L. and Rapetti F., Flexible weights for high order face based finite element interpolation. Submitted (2022).

4. Alonso Rodríguez A., Bruni Bruno L. and Rapetti F., Towards nonuniform distributions of unisolvent weights for Whitney finite element spaces on simplices: the edge element case. Calcolo 59 (2022).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3