Ultra-short-time prediction technology of wind power station output based on variational mode decomposition and particle swarm optimization least squares vector machine

Author:

Shen Runjie,Hua Danqiong,Wang Yiying,Xing Ruimin,Ma Min

Abstract

Wind power is developing rapidly in the context of sustainable development, and a series of problems such as wind curtailment and power curtailment have gradually emerged. The forecast of power generation output has become one of the hotspots of current research. This paper proposes a wind power plant output ultra-short-time prediction technology based on variational modal decomposition and particle swarm optimization least squares vector machine. Variational Modal Decomposition (VMD) method decomposes the historical output data of wind power plants at multiple levels. At the same time, it explores the impact of various decomposition methods such as EMD decomposition on the prediction accuracy, and uses the least squares support vector machine based on particle swarm optimization algorithm. Predictive summation is performed on each level of data separately to obtain a more accurate prediction effect, which has a certain improvement in prediction accuracy compared with traditional prediction algorithms.

Publisher

EDP Sciences

Reference13 articles.

1. Jiangping Yang. Short-term wind speed and power forecasting in wind farm based on ANN combination forecasting[D]. Chongqing : Chongqing University, 2012.

2. A hybrid forecasting approach applied to wind speed time series

3. Tai-Hua C, Lu W, Wei M A. Wind Speed Prediction Based on AR,ARIMA Model[J]. East China Electric Power, 2010.

4. Variational Mode Decomposition

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3