Improved Artificial Bee Colony Algorithm Applied to Neural Network Photovoltaic Power Generation Prediction Method

Author:

Zhu Jiaxiong,Qiang Jiang,Feng Chang,Jing Cao

Abstract

With the increase in the use of renewable energy, especially the development and utilization of solar energy resources, accurate photovoltaic power generation prediction technology will help the promotion of photovoltaic power generation. The amount of photovoltaic power generation depends on weather conditions, and it is easy to produce large fluctuations under different weather conditions. Its power generation has the characteristics of randomness, fluctuation and intermittency. In view of the shortcomings of the traditional BP neural network prediction method, this paper proposes an improved artificial bee colony algorithm. The improved artificial bee colony algorithm is used to optimize the network parameter weights in the traditional BP algorithm, and the two algorithms are merged in global iteration. Based on the characteristics of training light intensity, weather, temperature and historical power value of photovoltaic output power,a photovoltaic power generation prediction model is established. The simulation results show that the improved artificial bee colony algorithm in the neural network’s photovoltaic power generation forecast improves the accuracy and convergence speed of the traditional BP neural network convergence solution, and can provide more comprehensive information for grid power dispatch and control.

Publisher

EDP Sciences

Reference8 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3