Nonlinear vibrations of earth structures

Author:

Mirsaidov M.M.,Ishmatov A.N.,Urinov B.Kh.,Khazratkulov I.A.,Rayimov A.O.

Abstract

This article offers a detailed analysis of the current state of plane structure dynamics, addressing the complexities posed by non-homogeneous materials exhibiting nonlinear elastic and viscoelastic properties during real-life operations. The study proposes a comprehensive mathematical model and algorithm to investigate the dynamic behavior of such structures, employing the non-linear hereditary Boltzmann-Volterra theory to describe viscoelastic material properties accurately. Nonlinear oscillatory systems are analyzed using Lagrange equations based on the d’Alembert principle. The problem is approached through a multi-step process. Initially, the linear elastic problem of the structure’s natural oscillations is solved to determine its natural frequencies and modes of oscillations. Subsequently, these eigenmodes are employed as coordinate functions to address forced nonlinear oscillations in viscoelastic non-homogeneous systems. The complexity of the problem necessitates solving a Cauchy problem comprising a system of nonlinear integrodifferential equations. To illustrate the methodology, the study examines the Gissarak earth dam, considering real operational conditions and nonlinear, viscoelastic material properties near resonant modes of vibrations. Utilizing numerical methods, the dynamic behavior of the structure is analyzed, assessing displacements and stress components at different time points under non-stationary kinematic action. Stress concentration regions within the structure are identified for resonant vibrations, allowing the evaluation of its strength. Furthermore, the impact of nonlinear elasticity and viscoelasticity on the structural dynamics is quantified. This research provides valuable insights into the behavior of plane non-homogeneous structures, considering real-world scenarios and material complexities, ultimately contributing to an improved understanding of structural dynamics and facilitating the identification and mitigation of potential structural challenges.

Publisher

EDP Sciences

Subject

General Medicine

Reference35 articles.

1. Bate K., Wilson E., Numerical methods of analysis and FEM, Moscow, Stroyizdat, 448 (1982)

2. Filatov A. N., Asymptotic methods in the theory of differential and integrodifferential equations. Tashkent: Fan, 214 (1974)

3. Demidovich B. P., Maron I. A., Shuvalova E. Z., Numerical methods of analysis. Approximation of functions, differential and integral equations, Moscow, Nauka, 368 (1967)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3