A CFD-DEM Based Numerical Investigation of Debris Flow on Ballasted Railway Track

Author:

Gong Yufeng,Qian Yu

Abstract

Debris flow occurring in mountainous areas can cause issues to railway tracks. Debris flow may cause large track deformation and even track breakage and introduce server ballast fouling afterwards. After the flash of a debris flow, the fine particles can be retained in the ballast layer and significantly reduce track drainage, leading to lower bearing capacity and a higher risk of track lateral stability problems. Moreover, these solid particles may deposit on the railway surface and endanger the train directly. Unfortunately, those debris flow introduced track issues have not been thoroughly investigated. This study presents a numerical investigation of the impact of the debris flow on the railway track. Various factors governing the debris flow are considered, including particle size and solid fraction. Besides, those factors affecting the ballast are also discussed, such as fouling condition and initial void ratio. A coupled computational fluid dynamics and discrete element method (CFD-DEM) approach is developed to capture the interactions between particles/particles, water/air, and particles/fluid. The results from this study may help the railway to improve track resilience before the debris flow and to improve maintenance strategy after the debris flow flashing.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3