Real-time debris flow detection using deep convolutional neural network and Jetson Nano

Author:

Pham Minh-Vuong,Song Chang-Ho,Nguyen Thanh-Nhan,Lee Ji-Sung,Kim Yun-Tae

Abstract

This study aims to develop a potential system for real-time detection of debris flow motion using a deep convolutional neural network (CNN) and image processing techniques. A system consisting of a pre-trained CNN model, NVIDIA Jetson Nano, and a camera was used to identify debris flow movement. The pre-trained CNN model was trained on an image dataset derived from 12 debris flow videos obtained from small flume tests, large flume tests, and several debris flow events. The application results of the proposed system on the flume test in the laboratory reached an F1 score of 72.6 to 100%. The real-time processing speed of the CNN model achieved from 2 to 21 frames per second (FPS) on the Jetson Nano. Both the accuracy and the processing speed of CNN model depend on the size of the video input and the input size of the model CNN. The CNN model of 320 × 320 pixels with a resolution of 800 × 480 pixels gives accuracy (F1 = 99.2%) and processing speed (FPS = 20) considered the optimal model when running the Jetson Nano device; thus, it can be applied for early detection and warning systems.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3