The spatial distribution of debris flows in relation to observed rainfall anomalies: Insights from the Dolan Fire, California

Author:

Cavagnaro David B.,McCoy Scott W.,Thomas Matthew A.,Kostelnik Jaime,Lindsay Donald N.

Abstract

A range of hydrologic responses can be observed in steep, recently burned terrain, which makes predicting the spatial distribution of large debris flows challenging. Studies from rainfall-induced landslides in unburned areas show evidence of hydroclimatic tuning of landslide triggering, such that the spatial distribution of events is best predicted by the observed rainfall anomaly relative to climatic norms rather than by absolute rainfall. In this paper, we test whether the spatial distribution of debris flows in response to rainfall can be similarly predicted by rainfall anomaly. The 520 km2 Dolan Fire burn scar in Monterey County, California, USA, spans a sharp hydroclimatic gradient and experienced a widespread storm in January 2021 that triggered floods and debris flows, providing a natural experiment in which to test this hypothesis. In this study, we use remote and field methods to map debris-flow response and examine its spatial heterogeneity. Together with rainfall data, our mapping reveals that the observed anomalies in peak 15-min rainfall intensity (I15) relative to the intensity of the 1-yr return interval storm predict debris-flow occurrence better than the absolute peak I15. Our findings indicate that debris-flow processes and threshold rainfall required for debris-flow initiation may be tuned to local hydroclimate.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3