Predicting Wind Energy: Machine Learning from Daily Wind Data

Author:

Subramani K.,J Sharon Sophia,Habelalmateen Mohammed I.,Singh Rajesh,Pahade Akhilesh,Ikhar Sharayu

Abstract

This paper offers a comprehensive review of the advancements in the realm of renewable energy, specifically focusing on solid oxide fuel cells and electrolysers for green hydrogen production. The review delves into the significance of wind energy as a pivotal renewable energy source and underscores the importance of precise forecasting for efficient energy management and distribution. The integration of machine learning-based approaches, such as Support Vector Regression and Random Forest Regression, has shown promising results in enhancing the accuracy of wind energy production forecasts. Furthermore, the paper explores the broader landscape of renewable energy generation forecasting, emphasizing the rising prominence of machine learning and deep learning techniques. As the penetration of renewable energy sources into the electricity grid intensifies, the need for accurate forecasting becomes paramount. Traditional methods, while valuable, have encountered limitations, paving the way for advanced algorithms capable of deciphering intricate data relationships. The review also touches upon the inherent challenges and prospective research avenues in the domain, including addressing uncertainties in renewable energy generation, ensuring data availability, and enhancing model interpretability. The overarching goal remains the seamless integration of renewable sources into the grid, propelling us towards a greener future.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3