FEM Analysis on Thermo-mechanical behavior and experimental validation of Al20Cr20Fe25Ni25Mn10 High Entropy Alloy during Spark Plasma Sintering

Author:

Kanyane Lehlogonolo Rudolf,Popoola Patricia,Mpofu Praise,Malatji Nicholas,Ogbonna Victor

Abstract

High entropy alloy developed with spark plasma sintering was modelled with COMSOL Multiphysics. This focus at examining the effect of spark plasma sintering fabrication parameters on thermal and mechanical stress distribution in the sintered Al20Cr20Fe25Ni25Mn10 high entropy alloy (HEA). And to achieve this, a fully thermal-electrical-mechanical integrated and dynamic finite element model (FEM) was adopted. The simulation utilised the optimal parameters employed in the laboratory to produce the samples. The geometry for the modelling was 2D axisymmetric as the parameters were based on temperature-dependent characteristics noting that only the sintered sample was modelled and simulated in order not to simplify the modelling. The FEM maintained constant sintering temperature, pressure, and heating rate but concentrated on the impact of residence durations. To verify the simulation results, morphological alterations and densification validation tests were conducted. The microstructural characterization of the sintered sample demonstrated the relationship between the stress distribution and computational temperature found in the current FEM. Noting good particle-to-particle necking. From the model, results showed that the sintered sample at different points depicted a yield stress far greater than the von Mises stress with least thermal stress at 30 MPa. This validate that the developed sample is mechanically stable based on the factor of safety failure criterion and design. However, the study recommend that further work should be conducted considering different sintering pressure of variation 10 to 30 MPa.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3