Enhanced Thermoelectric Performance of CoSb3 Based Incorporated with Reduced Graphene Oxide

Author:

Masruhah Alma Nur Roisatul,Diantoro Markus,Yogihati Chusnana Insjaf,Pujiarti Herlin,Pahlevi Reza Akbar,Meevasana Worawat

Abstract

Thermoelectric is one of the energy harvesters that can convert heat energy into electrical energy currently being developed. One of the thermoelectric materials most studied is Antimony Cobalt (CoSb3). The unique crystal structure, high carrier mobility, and high electrical conductivity of CoSb3 -based skutterudite is considered promising thermoelectric material for medium-temperature thermoelectric applications. A comprehensive study is needed to investigate scientific information and its application by modifying the combination of the two phases by making CoSb3 /rGO nanocomposites. CoSb3 was synthesized using the polyol method, which was then composited with rGO material and made into thin films. It is found that adding rGO increases electrical conductivity. The addition of rGO composite showed that the local crystal structure experienced a decrease in peak intensity in the (0 1 3) plane. It was found that the grains were agglomerated. Furthermore, adding the rGO gives rise to a change in the size of the gr ins. The resulting electrical conductivity range from (1.4–4)×103 Ω-1 cm-1 at room temperature. While at 320 K, the value of the Seebeck Coefficient composite rGO 20% is around 1.2 V/K.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3