Evaluating Mechanical Strength in Vertical-Axis Tidal Turbines: A Comparative Study of Internal Blade Structure and Material Selection through CFD Simulation

Author:

Ari Muhamad,Hadiwidodo Yoyok Setyo,Mukhtasor

Abstract

Due to the density of water, tidal turbine blades are subject to significantly greater stresses than wind turbine blades. Multiple blade failures occurred during prototype testing as a result of loading conditions and protracted exposure to seawater, which created a severe work environment. The structural integrity of tidal turbine blades is essential for long-term reliability and performance. Numerous investigations into structural performance have been conducted. However, previous research has centred on horizontal-axis tidal turbines, while research on small-scale vertical-axis tidal turbines is limited. This paper aims to compare the Vertical-Axis Tidal Turbine (VATT) structural performance of hollow and solid blade structures in an identical NACA profile using three distinct materials. Finite element analysis (FEA) is employed to construct a model and simulate the mechanical characteristics of VATT blades. The use of static analysis simulation is employed in order to evaluate many parameters, including stress distribution and deflection. Parametric studies are conducted to explore the impact of internal blade structure and materials on mechanical strength. The use of computational fluid dynamics (CFD) simulations is employed for the purpose of analyzing the interaction between blades of vertical axis tidal turbines (VATT) and tidal currents, thereby enabling the assessment of structural loading. According to the simulation results, the hollow profile is subject to significant deflections and stresses. Other data indicates that the utilization of stiffeners in porous structures improves material efficiency and results in lighter blades, although further analysis is needed to investigate fatigue life prediction in optimizing structural design.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3