Author:
Lathii Fatul Chamidah Nurul,Mufti Nandang,Sari Dewi Atika,Ayu Permanasari Avita,Sunaryono
Abstract
Copper-indium-gallium diselenide (CuInGaSe2) or CIGS is one of the most promising materials for thin film solar cell applications. CIGS solar cells were deposited by sputtering method on ZnO/ZnS/CIGS/Mo arrays. Various parameters in sputtering greatly influence the efficiency of CIGS solar cells such as temperature. Thermal parameters are used to compare the effect of the CIGS layer on optimizing the efficiency of CIGS solar cells. The results show that the CIGS layer deposited using temperature has a crystalline structure, besides that the resulting efficiency is also higher than CIGS solar cells deposited without temperature, namely 0.177%.