CRISPR/Cas9-based genome engineering in HIV gene therapy

Author:

Tang Xuanting

Abstract

In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) technology has become the most heated genome editing technique. Comparing to earlier genetic engineering methods, the CRISPR/Cas system is more advantageous due to its simple convenient design, high efficiency, cost-effectiveness, and the ability to perform multi-sites editing simultaneously. As the most effective gene editing tool, it utilizes a simple short RNA-guided mechanism to direct Cas-mediated DNA cleavage at the target genome locus and exploits the endogenous DNA repair pathways to achieve site-specific gene modifications. Initially discovered as a part of the bacterial adaptive immune system, the CRISPR/Cas system has now been widely used to study a broad range of biological genomes. Besides its contribution to our understanding of the basic genetic science, the application of the CRISPR/Cas system also expands rapidly into the medical fields, showing great potentials in the research of genetic diseases, viral infectious diseases, and cancers. In this review, the latest research progress of CRISPR/Cas technology is summarized based on its development, mechanism, and application in HIV/AIDS intervention. This review also examines the existing weaknesses and the future prospects of this promising technology.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3