Exploration of underlying molecular mechanism of Lycii Cortex in Treating Type 2 Diabetes Mellitus Based on Network Pharmacology and Molecular Docking

Author:

Li Dongjun,Wang Denghui,Yan Shikai

Abstract

Objective: To explore the potential molecular mechanism of Lycii Cortex in treating type 2 diabetes mellitus (T2DM) by virtue of network pharmacology and molecular docking method. Methods: Ingredients of Lycii Cortex were collected from TCMSP and BATMAN-TCM databases, and the corresponding targets and T2DM-related targets were obtained respectively from SwissTargetPrediction and GenCards databases. Venn diagram was applied to derive the potential active components and effect targets of Lycii Cortex in the treatment of T2DM. GO enrichment analysis and KEGG pathway analysis were performed in the database of DAVID. Cytoscape 3.6.1 was used to produce the “core components-core targets” network. The molecular docking between core components and core targets was implemented through Autodock Vina. Results: Six core components and twelve core targets of Lycii Cortex in treating T2DM were identified. GO enrichment analysis and KEGG pathway analysis suggested the following signaling pathways and biological processes were involved in the treatment of T2DM by Lycii Cortex: PI3K-Akt signaling pathway, TNF signaling pathway, HIF-1 signaling pathway, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and peptidyl-threonine phosphorylation, the positive regulation of cyclase activity, the positive regulation of genetic expression, and lipoprotein translocation. The binding results demonstrated a relatively high affinity between core components of Lycii Cortex, including kulactone, hederagenin, scopolin, etc., and core targets, containing IL6, PPARγ, TNF, and mTOR, indicating the efficacy of Lycii Cortex in treating T2DM. Conclusion: Lycii Cortex plays a role in the treatment of T2DM with its ingredients such as kulactone, linarin, hederagenin, and scopolin regulating glycometabolism, affecting cell apoptosis and weakening inflammatory response through targets like IL6, PPARγ, TNF, and mTOR.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3