Author:
Hou Quanshan,Zhang Yanan,Zhao Shuai,Hu Yunhao,Shen Yongwang
Abstract
Autonomous lane changing, as a key module to realize high-level automatic driving, has important practical significance for improving the driving safety, comfort and commuting efficiency of vehicles. Traditional controllers have disadvantages such as weak scene adaptability and difficulty in balancing multi-objective optimization. In this paper, combined with the excellent self-learning ability of reinforcement learning, an interactive model predictive control algorithm is designed to realize the tracking control of the lane change trajectory. At the same time, two typical scenarios are verified by PreScan and Simulink, and the results show that the control algorithm can significantly improve the tracking accuracy and stability of the lane change trajectory.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献