Calculation of thermal conductivity coefficient of a binary mixture

Author:

Galkin Aleksandr,Pankov Vladimir,Fedorov Yan

Abstract

A correct consideration of the thermal factors during the design phase of civil engineering structures in the permafrost area determines their reliable and safe exploitation. Among the important indicators in selection of design solutions is the thermal conductivity coefficient of the construction materials used. The thermal conductivity coefficient is usually chosen from reference tables, but when using mixtures, the thermal conductivity coefficient is determined through a calculation. The aim of the present research was to compare the calculated values of thermal conductivity coefficient of binary mixtures (a mixture of a binding material and a filler) obtained using Lichtenecker and Schwerdtfeger formulas. The comparison was conducted in the range of properties of materials used for thermal accumulation and thermal insulation mixtures. It was determined that for thermal accumilation binary mixtures the calculation results are quite similar within a wide range of initial values. For thermal insulation binary mixtures, the calculation results are significantly different. The divergencies are by hundreds of percents. At the current stage of research it is impossible to make a conclusion about suitability of either calculation method to determine the thermal conductivity of a thermal insulation binary mixture.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3