SMART Materials for Biomedical Applications: Advancements and Challenges

Author:

Kumar Kodli Basanth,Rajitha Akula,Rao A. Kakoli,Alam Khursheed,Albawi Ali,Sethi Gaurav

Abstract

The advancement of SMART (Self-Healing, Multifunctional, Adaptive, Responsive, and Tunable) materials has had a significant impact on the domain of biomedical applications. These materials possess distinct characteristics that exhibit responsiveness to alterations in their surroundings, rendering them exceedingly appealing for a wide range of therapeutic applications. This study aims to examine the progress and obstacles related to SMART materials within the field of biomedicine. In recent decades, notable advancements have been achieved in the development, synthesis, and analysis of intelligent materials specifically designed for biomedical purposes. Self-healing materials have been employed in the development of implants, wound healing scaffolds, and drug delivery systems, drawing inspiration from natural regeneration mechanisms. The ongoing advancements in SMART materials have significant opportunities for transforming biological applications. The progression of nanotechnology, biomaterials, and bioengineering is expected to play a significant role in the advancement of materials that possess enhanced qualities and capabilities. The integration of SMART materials with emerging technologies such as 3D printing, gene editing, and microfluidics has the potential to create novel opportunities in the field of precision medicine and personalised healthcare. The effective translation of SMART materials from the laboratory to the clinic will need concerted efforts by researchers, physicians, regulatory agencies, and industry partners to address the present difficulties.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conductive Core–Shell Nanoparticles: Synthesis and Applications;The Journal of Physical Chemistry C;2024-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3