Exploring the Uncharted Territory: Future Generation Materials for Sustainable Energy Storage

Author:

Kumar Kaushal,Dixit Saurav,Haq Md. Zia ul,Maksudovna Vafaeva Khristina,Vatin Nikolai Ivanovich,Rao D.S. Naga Malleswara,Awaar Vinay Kumar,Nijhawan Ms. Ginni,Rani K. Swapna

Abstract

This study explores the domain of developing material categories for the purpose of sustainable energy storage, with the objective of addressing the constraints inherent in existing technologies and facilitating the development of inventive resolutions. The research examines the potential of nanomaterials, metal-organic frameworks (MOFs), polymers, and two-dimensional (2D) materials as a means to overcome the obstacles presented by current energy storage systems. This study investigates the qualities and potential of various materials, examining them in conjunction with a range of thorough characterization techniques. These approaches include electrochemical analysis, structural methodologies, nanoscale observations, and computer modelling. In the next analysis, this study will examine the future direction of research on energy storage materials, including prospective advancements and the critical obstacles related to scalability, cost-efficiency, and integration within energy systems. In general, this investigation highlights the significant impact of new materials on the development of a more environmentally friendly energy infrastructure. The present study focuses on the investigation of emerging materials for sustainable energy storage. Specifically, the research explores the potential of nanomaterials, metal-organic frameworks, polymers, and two-dimensional materials in this context. By examining the properties and characteristics of these materials, this study aims to contribute to the understanding and development of efficient and environmentally friendly energy storage solutions.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3