Revolutionizing Material Science: Exploring the Novel Applications of Thermally-Enhanced Processes in Next-Generation Materials

Author:

Bandhu Din,Pravallika B.,Kaushik Abhishek,Paul Surovi,Ali Hanaa Addai,Sharma Vishal

Abstract

With the emergence of novel thermally accelerated methods, the area of material science has undergone a paradigm shift, opening up previously unimaginable possibilities for the creation of next-generation materials with improved properties and functionalities. In order to shape the materials of the future, this paper explores the ground-breaking uses of thermally accelerated techniques such quick thermal annealing, spark plasma sintering, and laser-assisted deposition. Due to sluggish diffusion rates and incomplete reactions, traditional materials synthesis and processing processes frequently have trouble producing materials with the appropriate characteristics. This allows for accurate atomic-level manipulation of material microstructures. The engineering of materials with specific mechanical, electrical, thermal, and optical properties is made possible by the fine-tuning of microstructures. The importance of thermally accelerated processes in a variety of material classes, including metals, ceramics, polymers, and composites, is highlighted in this research. The use of thermally enhanced processes shows potential in promoting sustainable practises, as materials play a crucial part in addressing global concerns. These procedures help to reduce waste and conserve resources by enabling the effective recycling and upcycling of materials through controlled thermal treatments. The report also highlights the potential effects of thermally enhanced techniques on future industries such as flexible electronics, renewable energy systems, and medicinal devices, where specialised materials with outstanding performance are crucial.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3