Automated Voice-to-Image Generation Using Generative Adversarial Networks in Machine Learning

Author:

Yeluri Lakshmi Prasanna,Ramesh G.,Vijayalata Y.,Shareef Khaja,Chamola Shailesh,Gundavarapu Mallikarjuna Rao

Abstract

Creating visuals from words may appear to be a complex process, but it is achievable with today’s technological advancements in Information Systems. Naturally, all the human-centric actions and assumptions may lead to visualization using Artificial Intelligence. In today’s Information Systems technological world, any item or a thing can be best described in pictorial form as a human person. Our paper aims to focus on providing machines with this intelligence. To complete this challenge, we used Natural Language Processing with Deep Learning. Our primary focus is on Generative Adversarial Networks. GANs will generate data based on word labels that are provided. NLP is also important since it helps to translate the provided speech into embedding vectors that the model can use. Our study is on the CUB dataset, which comprises bird photos. In today’s world, there are text-to-image generating models accessible. The authors investigated all of them, extending text-to-image generation to voice-to-image generation.

Publisher

EDP Sciences

Subject

General Medicine

Reference28 articles.

1. Goodfellow I. J., Pouget-Abadie J., Mirza M., Xu B., WardeFarley D., Ozair S., Courville A. C., and Bengio Y.. Generative adversarial nets. In NIPS, (2014).

2. Salimans T., Goodfellow I. J., Zaremba W., Cheung V., Radford A., and Chen X.. Improved techniques for training gans. In NIPS, (2016).

3. Gregor K., Danihelka I., Graves A., Rezende D. J., and Wierstra D.. DRAW: A recurrent neural network for image generation. In ICML, (2015).

4. Isola P., Zhu J.-Y., Zhou T., and Efros A. A.. Image-to-image translation with conditional adversarial networks. In CVPR, (2017).

5. Ledig C., Theis L., Huszar F., Caballero J., Aitken A., Tejani A., Totz J., Wang Z., and Shi W.. Photo-realistic single image super resolution using a generative adversarial network. In CVPR, (2017).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3