The Effect of Adding Nanoparticles from the Synthesis of Arc Discharge on the Performance of Lithium Ion Batteries

Author:

Hanif Khilalul,Anwar Miftahul,Adriyanto Feri,Nizam Muhammad,Slamet Saputro Joko

Abstract

Lithium-ion battery is a type of rechargeable battery. A lithium-ion battery consists of several components, such as electrodes (anode and cathode), separators, and electrolytes. One factor that can affect a battery's performance is the quality of the electrodes. The commonly used anode consists of graphite powder. Currently, there is nanotechnology, namely the application of technology to make materials on the nanoscale (1-100 nm). The advantage of nanoparticle technology is its openness to be combined with other technologies, opening up opportunities to produce more perfect delivery systems. In this research, the production of lithium-ion batteries was carried out by adding nanoparticles as an anode. The nanoparticles used result from arc discharge synthesis with varying currents of 40A and 70A. The test results show that current variations in the arc-discharge synthesis process in the manufacture of lithium-ion battery anode nanoparticles affect the performance of lithium-ion batteries. Batteries using 70A nanoparticle anodes have a higher specific capacity than batteries using 40A nanoparticle anodes during chargedischarge. However, the specific capacity of the battery with nanoparticle anode is lower than that of the battery with graphite anode. When charging, the time needed for a battery that uses a 70A nanoparticle anode is shorter than a battery that uses a graphite anode and 40A nanoparticles. When discharging a battery that uses a 40A nanoparticle anode has a shorter time compared to a battery that uses a 70A nanoparticle and graphite anode.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3