Author:
Stefopoulos Georgios,Rigas Stylianos,Tsirikoglou Panagiotis,Kalfas Anestis I.
Abstract
This paper presents a probabilistic uncertainity evaluation method as described in the Guide to the Expression of Uncertainty in Measurements (GUM) and its application to probe measurements on pressure and fuel concentration. All sources of unceratinties are expressed as probability distributions. Consequently, the overall standard uncertainty of the quantity can be calculated using the Gaussian error propagation formula. The result of the uncertainty evaluation yields the most probable value of the measurand and describes its distribution in terms of rectangular (standard uncertainty) or gaussian (“expanded” uncertainty) distribution. A pitot-static probe and a fuel-concentration stem probe are used in order to demonstrate the principle of the probabilistic uncertainty evaluation method. The uncertainty induced by the pressure and concentration data acquisition system as well as the calibration of the fuel-concentration probe are included in the analysis. The overall “expanded” uncertainties for the measured and calculated values are presented as a function of different inlet fuel flows. In addition to this, the individual sources of uncertainty to the overall standard uncertainty are presented and discussed. Moreover, the transformation of standard uncertainty to “expanded” uncertainty will provide the deviation of the measurement in a 95% or 99% normal distributed interval instead of a 67% rectangular distributed interval.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献