Mitigation carbon emissions by microalgae: Assessing the viability of culture Arthrospira platensis grown on high CO2 concentrations

Author:

Chernova Nadezhda,Kiseleva Sophia,Chunzhuk Elizaveta,Grigorenko Anatoliy,Vlaskin Mikhail

Abstract

In this work, experimentally evaluated the viability of a consortium microalgae Arthrospira platensis rsemsu P Bios with heterotrophic bacteria when cultivated in a gas-air mixture with high concentrations of CO2 (from 0.04 to 9%). A laboratory setup was created to test the viability of microalgae strains at high concentrations of CO2. The experiments were carried out using 12 photobioreactors with a culture medium volume of 4 L each, placed in a gas chamber, which makes it possible to create elevated CO2 concentrations in the gas-air medium. The maximum growth rate of biomass of microalgae A. platensis is 170 mg/(l per day), the maximum absolute increase in biomass for 12 days is 1540 mg/l. The relatively low growth rate and absolute increase in the biomass of A. platensis at all concentrations of CO2 in the gas-air mixture may indicate that this culture requires a longer laboratory adaptation to high concentrations of CO2. The high cell viability found in all experiments by cytochemical staining of cells with methylene blue indicates the acquired tolerance of the culture to elevated CO2 concentrations (3–9%). However, after 12 days of the experiment with 9% CO2, morphometric signs of cell suppression are detected, which is expressed in deviations of the cell shape from normal, elongation (lack of division) and an increase in the number of dead cells. Quantitative characteristics of the microalgae consortium viability have been obtained.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3