AODV-based Defense Mechanism for Mitigating Blackhole Attacks in MANET

Author:

Moumen Idriss,Rafalia Najat,Abouchabaka Jaafar,Chatoui Youssef

Abstract

Mobile Ad hoc Networks (MANETs) are decentralized and self-configuring networks composed of mobile devices that communicate without a fixed infrastructure. However, the open nature of MANETs makes them vulnerable to various security threats, including blackhole attacks, where malicious nodes attract and discard network traffic without forwarding it to its intended destination. Mitigating blackhole attacks is crucial to ensure the reliability and security of communication in MANETs. This paper focuses on the development and evaluation of AODV (Ad hoc On-Demand Distance Vector)-based defence mechanisms for effectively mitigating blackhole attacks in MANETs, while simultaneously addressing energy efficiency and environmental sustainability. AODV is a widely used routing protocol in MANETs due to its on-demand nature and low overhead. However, it lacks built-in security mechanisms, making it susceptible to attacks. We incorporate energyaware route selection, solar-powered routing, collaborative energy sharing, energy-efficient intrusion detection, green routing optimization, and energy harvesting from environmental sources. By considering energy consumption and environmental factors in the route selection process, our defense mechanism not only enhances the security of the network but also contributes to energy conservation and reduced environmental impact. To evaluate the effectiveness of the proposed defence mechanisms, extensive simulations and performance analyses are conducted using network simulation tools. Through simulation-based evaluations, we demonstrate the effectiveness of our approach in achieving robust blackhole attack mitigation while extending the network’s lifetime and minimizing its carbon footprint. Our research offers valuable insights into the development of energy-efficient and environmentally sustainable solutions for securing MANETs in the face of evolving security threats.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3